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Abstract: The clear and accurate understanding of the degree of hepatocellular-carcinoma 
(HCC) differentiation plays a key role in the determination of the patient prognosis and 
development of a treatment plan by the clinician. However, label-free and automated 
classification of the HCC grading is challenging. Here, we demonstrate second-harmonic 
generation (SHG) microscopy for label-free classification of HCC grading in paraffin-
embedded specimens. A total of 217 images from 113 patients were obtained using SHG 
microscopy, and the SHG signals from the collagen within the tumor were analyzed using 
feature extraction and selection, the Mann–Whitney test, and the receiver operating 
characteristic curves. The results exhibit good correlation between the software analysis and 
the diagnosis by experienced pathologists. Combining the image features and clinical 
information, an adaptive quantification algorithm is generated for automatically determining 
the HCC grade. The results suggest that SHG microscopy might be a promising automated 
diagnostic method for clinical use, without requiring time for tissue processing and staining. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 
Liver cancer is the fifth most common cancer worldwide, and is the third deadliest [1]. 
According to the cancer statistics of China, in 2015, 466100 new cases and 422100 deaths 
were estimated, ranking third and fourth as the cause of male and female mortality, 
respectively [2]. Hepatocellular carcinoma (HCC) comprises more than 90% of liver cancer. 
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The obtained images were then clustered by a supervised algorithm, in the training stage. The 
resulting SHG image represented the collagen distribution, over the examined tissue section. 
Meanwhile, the tumor section was still accessible for H&E staining. In collaboration with 
pathologists, the collagen distribution, based on the SHG image, was correlated with the 
classically stained image of the sample. A collagen database was generated for different 
grading types, based on expert annotation, enabling us to build an adaptive quantification 
algorithm. 

 

Fig. 2. Workflow of the training and validation stage. In the training stage, the SHG images 
were correlated with classical histopathological annotation, by an expert. The resulting 
database was used for the adaptive quantification algorithm, which was validated on 
independent samples in the validation stage. 

The procedure for building the adaptive quantification algorithm included the 
identification of different collagen patterns (the aggregated or the distributed), the extraction 
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of collagen morphological features (percentage, length, width, cross-link density and space, 
etc.), the statistical analysis of features of the respective collagen, which were then drawn into 
the boxplots, and establishment of multinomial logistic regression model [16]. The used 
algorithm was implemented in the MATLAB 2015b programming environment. 

2.2 Tissue-sample preparation 

To obtain a large sample size and relevant clinical data, formalin-fixed, paraffin-embedded 
(FFPE) tissues were used in this study. All the archival FFPE tissues were diagnosed at the 
Fujian provincial tumor hospital. The tissue samples were cut into two 5~10 µm-thick pieces 
for SHG imaging and H&E staining, respectively. A trained pathologist independently read 
and staged the stained samples, using the WHO grading system. This work included 113 
patients, who underwent surgical biopsies from 2011 to 2017 (Table 1), and it was approved 
by the institutional review board of the Fujian provincial tumor hospital. 

Table 1. Summary of the experimental samples with different gradings 

Gradings Total Sex age Tumor embolus Relapse Metastasis 

G1 34 (70) 
Male 26 
Female 8 

>50 13  
≤50 21 

23 19 8 

G2 39 (68) 
Male 31 
Female 8 

>50 12  
≤50 17 

16 16 1 

G3 40 (79) 
Male 36 
Female 4 

>50 32  
≤50 8 

9 10 2 

2.3 Image acquisition 

Because the formalin and paraffin are not effective in generating SHG signal and the collagen 
is only capable of emitting strong SHG signal [17], the SHG imaging contrast in the FFPE 
tissues is not to be altered. In this work, we only used SHG microscopy for the classification 
of HCC grading. Specifically, SHG images of the unstained sections of the tissue samples 
were acquired using the Zeiss LSM 880 coupled with a femtosecond Ti: sapphire laser 
operating at 810 nm [18, 19]. An objective was employed to focus the excitation beam into 
the sample and collect the backscattered SHG signals. To obtain a big field of view (850 × 
850 μm2), a 10 × objective was chosen in this work. A fine focusing stage was used to 
translate the samples after x-y scan of the samples for obtaining a large-area image (8 × 8 
mm2). This system has several channels and each channel can be set selectively for accepting 
emission signals within a random range of 370–700 nm, to obtain the images. In this study, 
one of the channels (370–419 nm, green color-coded) was used for collecting the SHG signals 
[20]. Selection of the excitation wavelength is optimal for SHG imaging [21, 22]. 

2.4 Histopathological scoring 

Currently, tumor histopathologic classification relies on the WHO grading system, based on 
the degree of staining of the acidophilia in the cancer cell cytoplasm, the size of the nuclei, 
nucleoplasm ratio, depth of the nuclear staining, cell functions, and tissue structures. Tumors 
are graded as well-differentiated (G1), moderately differentiated (G2), poorly differentiated 
(G3), and undifferentiated (G4). In G1, the tumor cells and tissue structures, which are 
referred to as low grade, are similar to the normal ones. In contrast, the cells and tissue of G3 
and G4 grow rapidly and spread faster, and are referred to as high grade 
[https://www.cancer.gov/about-cancer/diagnosis-staging/prognosis/tumor-grade-fact-sheet]. 
In this study, the 217 HCC samples included 79 poorly differentiated, 68 moderately 
differentiated, and 70 well-differentiated ones. 

2.5 Statistical analysis 

The two-tailed Mann–Whitney test was used for assessing the statistical differences between 
the HCC gradings. The receiver operating characteristic (ROC) curves and the area under the 
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ROC (AUC) were obtained to detect the various HCC gradings, using SPSS 22.0. A specific 
multinomial logistic regression model was built using MATLAB 2015b for combining the 
best image and clinical features to obtain a higher recognition rate. Then, p<0.05 was defined 
as statistically significant. 

3. Results 
3.1 SHG-revealed HCC collagen architectures 

A prospective study, with 217 surgical specimens from 113 patients, was performed to 
evaluate the diagnostic accuracy of SHG, compared to that by a pathologist. Figure 3 displays 
three 8 × 8-mm2 SHG images of G1, G2, and G3, respectively. The entire SHG distribution 
within the tumor was mainly revealed by low enlargement (10 × ), and the collagen 
localization was displayed clearly and precisely. As observed in Fig. 3(A), the collagen in G1 
is negligible and scattered in a slender strip, similar to a normal liver. Within the tumor in G2 
(Fig. 3(B)), an obvious increase was observed in the collagen; each piece of collagen had 
grown longer and thicker, from the initial shape. The collagen was spread in the shape of 
spider webs, within a typical tumor, in G3 (Fig. 3(C)). 

 

Fig. 3. Representative SHG images of HCC in G1, G2, and G3. The size of images is 8 × 8 
mm2. 

3.2 HCC quantitative assessment 

The image processing consists of two main steps. First, the acquired SHG images were 
segmented into collagen and background by a segmentation algorithm based on Gaussian 
mixture models [23]. Second, the identification of aggregated and distributed collagen, and 
the further extraction of collagen morphological features were performed using a fiber 
network extraction algorithm [24] based on the binary image of the segmented collagen. In 
this process, the number of cross-links per fiber determined the collagen pattern, and the data 
sets of the image features were obtained. A set of data included 13 collagen architectural 
features, such as the aggregated collagen percentage, distributed collagen percentage, total 
collagen percentage, fiber number, fiber length, fiber width, cross-link density, cross-link 
space, ratio between the aggregated and total collagen, etc. 

217 HCC images were processed, including 70 images from G1, 68 images from G2, and 
79 images from G3. Through the two-tailed Mann–Whitney test of each parameter between 
different HCC grading, we drew the following conclusion and presented them in the boxplots. 
Six parameters exhibited significant differences and an obvious increase, when the grading 
changed from G1–G3 (p<0.05) (Fig. 4). The other seven parameters exhibited no discernible 
differentiation between the two-tailed contrasts. Four characteristics, namely, the cross-link 
density, space of the aggregated collagen, and the distributed collagen length and width, could 
be distinguished between G2 and G3, but not between G1 and G2. The three characteristic 
parameters, namely, the aggregated collagen length and width, and the ratio between the 
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aggregated and total collagen, were statistically significant in G1 and G2. However, there 
were no statistical differences between G2 and G3 (Fig. 5). 

 

Fig. 4. Changes in six features, between the various HCC gradings: (A) aggregated collagen 
percentage, (B) number, (C) distributed collagen percentage, (D) number, (E) cross-link 
density, and (F) total collagen percentage. The boxes indicate the median 25th and 75th 
percentiles, whereas the bars display the adjacent values. The “*” symbol represents p<0.05, 
“**” represents p<0.01, and “***” represents p<0.001. 

 

Fig. 5. Changes in seven features, between the various HCC gradings: (A) aggregated collagen 
length, (B) width, (C) cross-link density, (D) cross-link space, (E) distributed collagen length, 
(F) width and, (G) ratio between the aggregated and total collagen The boxes indicate the 
median 25th and 75th percentiles, whereas the bars display the adjacent values. The “*” 
symbol represents p<0.05, “**” represents p<0.01, and “***” represents p<0.001. 

3.3 Detection of G1 and G3 

We further analyzed the correlation between the collagen architectural features and the WHO 
grading system, which is the widely applied standard for HCC classification. Tables 2 and 3 
recorded the AUC value, the cut-off value, sensitivity, and specificity of each feature in two 
groups G1 vs. G2G3 and G1G2 vs. G3. Based on the ROC-curve analysis (Fig. 6 and Fig. 7), 
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we determined that five parameters could effectively identify the well-differentiated (G1) 
from the moderately and poorly differentiated (G2 and G3). The AUC of the aggregated 
collagen number was the largest with a value was 0.890 (Fig. 7(A)). The cut-off value was 
0.70, between the sensitivity (84.1%) and specificity (85.7%). The AUC values of four other 
parameters, the aggregated collagen percentage, distributed collagen number, distributed 
collagen percentage, and total collagen percentage, were lesser (0.822-0.870) (Fig. 7(A), 
Table 2). Effectively distinguishing the poorly-differentiated (G3) from the well- and 
moderately differentiated (G1 and G2), as shown in Fig. 7(B), the AUC values of the 
aggregated collagen number and distributed collagen number were 0.821 and 0.807, 
respectively. For the aggregated collagen number, the cut-off value was 0.54, between the 
sensitivity (87.1%) and specificity (66.9%). The cut-off values (0.51), corresponding to the 
sensitivity (84.3%) and specificity (66.2%) were determined, for the distributed collagen 
number (Table 3). 

 

Fig. 6. (A) ROC analysis of three parameters: the collagen percentage including the total, the 
aggregated and the distributed, to identify G3 from G1 and G2; (B) ROC analysis of four 
parameters: the cross-link density of aggregated and distributed collagen, the ratio between 
aggregated and total collagen, and the aggregated collagen length, to identify G3 from G1 and 
G2; (C) ROC analysis of four parameters: the aggregated collagen width, the distributed 
collagen length and width, and cross-link space of aggregated collagen, to identify G3 from G1 
and G2; (D) ROC analysis of two parameters: the ratio between aggregated and total collagen, 
and the cross-link density of distributed collagen, to detect G1 from G2 and G3; (E) ROC 
analysis of three parameters: the cross-link density of aggregated collagen, and the aggregated 
collagen length and width, to detect G1 from G2 and G3; (F) ROC analysis of three 
parameters: the distributed collagen length and width, and the cross-link space of aggregated 
collagen, to detect G1 from G2 and G3. 
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Fig. 7. (A) ROC analysis of five parameters: the aggregated collagen number and percentage, 
total collagen percentage, and the distributed collagen number and percentage, to identify G1 
from G2 and G3, and (B) ROC analysis of two parameters: the aggregated collagen number 
and distributed collagen number, to detect G3 from G1 and G2. 

Table 2. The AUC value, cut-off value, sensitivity, and specificity of the SHG image 
features, for detecting G1. 

G1 vs. 
G2G3 

Aggregated collagen Distributed collagen 
Total 

collagen 
percentag

e 

Ratio 
between 

aggregate
d and 
total 

collagen

Percentag
e 

Numbe
r 

Lengt
h 

Widt
h 

Cross-
link 

densit
y 

Cross
-link 
space

Percentag
e 

Numbe
r 

Lengt
h 

Widt
h 

Cross-
link 

densit
y 

AUC 
value 

0.87 0.89 0.596 0.549 0.655 0.413 0.822 0.858 0.493 0.433 0.759 0.869 0.761 

Cut-off 
value 

0.64 0.70 0.21 0.16 0.27 0.18 0.55 0.59 0.14 0.21 0.39 0.63 0.46 

Sensitivit
y (%) 

88.4 84.1 60.9 76.8 63.8 63.8 71 76.1 82.6 31.2 53.6 84.8 75.4 

Specificit
y (%) 

75.3 85.7 59.7 39 63.6 18.2 84.4 83.1 31.2 48.1 85.7 77.9 70.1 

Table 3. The AUC value, cut-off value, sensitivity, and specificity of the SHG image 
features, for detecting G3. 

G1G2 vs. 
G3 

Aggregated collagen Distributed collagen 
Total 

collagen 
percentag

e 

Ratio 
between 

aggregate
d and 
total 

collagen

Percentag
e 

Numbe
r 

Lengt
h 

Widt
h 

Cross-
link 

density

Cross
-link 
space

Percentag
e 

Numbe
r 

Lengt
h 

Widt
h 

Cross-
link 

densit
y 

AUC 
value 

0.791 0.821 0.525 0.472 0.7 0.365 0.785 0.807 0.434 0.373 0.721 0.794 0.665 

Cut-off 
value 

0.46 0.54 0.16 0.14 0.29 0.25 0.51 0.51 0.19 0.27 0.36 0.48 0.32 

Sensitivit
y (%) 

85.7 87.1 92.9 2.9 
45.7/44.

3 
54.3 91.4 84.3 30 17.1 62.9 84.3 84.3 

Specificit
y (%) 

60.7 66.9 22.8 83.4
83.4/84.

8 
20.7 59.3 66.2 51 55.9 73.1 63.4 47.6 

                                                                       Vol. 9, No. 8 | 1 Aug 2018 | BIOMEDICAL OPTICS EXPRESS 3791 

 



3.4 Adaptive quantification algorithm 

Combining 13 image features with seven clinical information, we used the logistic regression 
algorithm to automatically score 20 characteristics (0-1). Irrespective of whether the feature 
was clinical or an image, the characteristics were selected, if their scores were greater than 
0.5. The selected features were analyzed by a specific multinomial logistic regression model 
for building the adaptive quantification algorithm. 80% of the entire data was set as the 
training data and 20% as the validation data. The recognition accuracy reached 91%. 

4. Discussion 
By well correlating the spatial architectural features of SHG images and the pathologist 
diagnosis, we generated an adaptive quantification algorithm that can reliably classify the 
HCC grading. This algorithm can minimize the influence of sampling error and the intra/inter 
observer discrepancies [25–27]. 

As the SHG imaging method has several advantages, it is a perfect substitute for 
conventional histological imaging. The samples are not deteriorated or photo-damaged. 
Regardless of the sample-preparation type, SHG microscopy can image not only the frozen-
section but also the paraffin-embedded tissues. Moreover, a 3D reconstruction of the fibrillar 
collagen is achieved, in each case. Although postoperative paraffin-embedded H&E histology 
is considered as the gold standard of HCC grading diagnosis, approximately 16 h is required 
for fixation, processing, and staining. Intraoperative frozen-section analysis with SHG 
microscopy can significantly reduce the diagnosis time, and obtain quick and effective 
feedback by eliminating the time consumed for tissue processing and staining. 

This study is based on traditional histopathologic grading. In order to monitor the growth 
of the tumor, we imaged the spatial architectural features of the fibrillar collagen within the 
tumor. The majority of HCC growth progress from a regenerative nodule to atypical 
hyperplasia, further progressing to well-differentiated HCC, and finally to moderately or 
poorly differentiated HCC. When the tumor diameter reaches 2 cm, the poorly differentiated 
region replaces the well-differentiated one, with the malignant biological characteristics of 
HCC. This behavior proves that the degree of grading plays a significant role in the prognosis 
of HCC [28]. In addition, HCC histologic grade extremely impacts the outcome of surgical 
treatments [29]. Thus, it is an important factor that influences the intraoperative decision-
making, postoperative recurrence rate, survival rate, and life-quality of patients. As the HCC 
differentiation reduces, its invasiveness gradually increases, and the survival prognosis of the 
patient worsens. Hence, the clear and accurate understanding of the degree of HCC 
differentiation is beneficial for clinicians, for determining a comprehensive treatment in the 
perioperative period. 

With the same SHG imaging method, Gailhouste et al. first combined the SHG signal and 
the collagen forms to develop the fibrosis-SHG index. This innovative method was routinely 
applied to biopsies from 119 patients with chronic liver disease for measuring the fibrosis 
area, during fibrosis progression [30]. Xu et al. combined 87 parameters of the collagen 
architectural features from 25 rat samples and 162 chronic hepatitis-B patients to establish the 
qFibrosis, which can identify all the METAVIR stages reliably and faithfully [31]. Our study 
provides a highly reproducible quantification algorithm, which can be used as a standard 
platform for assessing HCC progression. For the same samples, different pathologists may 
arrive at inconsistent diagnostic conclusions; whereas, in other cases, different regions of the 
same sample may be diagnosed with different types of differentiation. Our method can solve 
the above-mentioned discrepancies. The tumor-cell differentiation and an incomplete 
envelope are significant markers of the malignant transformation of the tumor biological 
characteristics. Furthermore, considering the architectural features of the tumor-enveloped 
fibers and the peripheral fibers of blood vessels, we intend to expand the imaging range and 
upgrade the quantification algorithm, as the next step. 
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Currently, it is impossible to obtain or ignore HCC differentiation, in general, because 
ablation therapy is increasingly applied to early HCC. However, according to reports, it is 
easier to transfer poorly-differentiated HCC by needle after radiofrequency ablation, which 
has greater risk of intrahepatic metastasis. Therefore, it is important to predict the degree of 
differentiation of early HCC before surgery. Some studies suggest that clinicians can resort to 
liver resection instead of radiofrequency ablation for early poorly differentiated HCC, for 
better prognosis. On the other hand, before liver transplantation, patients and clinicians 
should consider the biological characteristics of the tumor, particularly, the histological 
differentiation. Poorly differentiated HCC leads to shorter survival time and higher recurrence 
rates. In addition, it serves as the theoretical basis for the rational use of organs, in case of 
organ shortage. 

5. Conclusion 
In summary, we combined SHG microscopy, histopathology, and software to rapidly classify 
HCC grading, which provides more accurate information for tumor detection and therapy. It 
was demonstrated that SHG images cannot only distinguish HCC differentiation by the 
Mann-Whitney test, boxplot, and ROC analysis, but can also be used for generating an 
adaptive quantification algorithm to calculate the recognition rate. As a visual method, SHG 
microscopy with artificial intelligence can be a promising tool for clinical use. 
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